
EMBEDDED SQL

1© copyright Ton de Rooij retrieved from www.tonderooij.com

Introduction

The second half of the English book ‘Databases and
SQL’ describes the use of the programming language
SQL for retrieving and updating data in a relational
database.
SQL is used in the book as a language that is
self-contained. Statements written in SQL do not
have to be self-contained. They can also be used as
part of programs written in for instance COBOL or
C. This is called embedding. We refer to SQL in that
form as ‘embedded SQL’. In the case the use of SQL
in these programming languages, the programming
languages like COBOL, C or FORTRAN are host
languages.
In this article we describe how SQL is used as an
embedded language.

The following will be discussed in this article:
- how we can insert SQL statements between the

programming statements of a host program
- how we deal with variables of the host language in

the SQL statements
- how we can use the results of queries and update

statements
- how we can use transactions in embedded SQL
- how we can use error messages
- overview of the examples of embedding in COBOL

For the examples we will use the example databases
you can find in the book ‘Databases and SQL’ (Eng-
lish edition), paragraph 6.2:
- labour division database
- library database

Embedding and host variables

Separating SQL statements from the host pro-
gram
It is important that the compiler of the host program
recognizes the SQL statements and passes these on
to SQL itself. A COBOL compiler expects that every
SQL statement is preceded by:
 EXEC SQL

and is ended with:
 END-EXEC.

example
 EXEC SQL
 UPDATE LOCATION
 SET CITY = ‘WICKFORD’
 WHERE LOCNAME = ‘FASTBITE’
 END-EXEC.

host variables in SQL statements
In the SQL statements we can use variables of the
host program. These host variables are preceded
by a colon in order to distinguish them from column
names of tables:
:hostvariablename

example
 EXEC SQL
 DELETE FROM LOCATION
 WHERE LOCNAME = :LOCNAME
 END-EXEC.

Queries and update statements

using a cursor
A host program can only work with one row from a
table at a time. A SELECT statement however can
produce more than one row. The host program there-
fore needs a mechanism to use these rows (from a
table the SELECT statement produces) separately.
This mechanism is a kind of pointer that points to
one specific row of the table the SELECT statement
has produced. Such a pointer is called a cursor. This
cursor enables the host program to use only the
values of the row the cursor points to.

The output of a SELECT statement can only be
used with a cursor (an exception to this that we will
discuss further on is: SELECT INTO). A cursor has to
be declared, opened, used and closed with separate
statements.

The statement for declaring the cursor is:
DECLARE cursorname CURSOR FOR select-
statement

(lower case letters signify where something has to
be filled in)

example
 EXEC SQL
 DECLARE CUR1 CURSOR FOR
 SELECT E1.ENR, E1.SALARY,
 E2.ENR, E2.SALARY
 FROM EMPLOYEE E1,
 EMPLOYEE E2,
 REPLACEMENT R
 WHERE E1.ENR = R.REPLACED
 AND R.SUBSTITUTE = E2.ENR
 AND E1.FNAME = ‘DIRECTOR’
 ORDER BY E1.FNAME
 END-EXEC.

EMBEDDED SQL

2© copyright Ton de Rooij retrieved from www.tonderooij.com

statement DELETE
The statement for deleting the row that the cursor
points to, is:
DELETE FROM tablename
WHERE CURRENT OF cursorname

(the table names that are mentioned in the UPDATE
and DELETE statements have to align with the table
the cursor points at. This is only possible in case the
cursor of a SELECT statement has a FROM clause
with only one table. In addition to that the output of
the SELECT statement must refer to only one row
of the table)

example
(in the example the cursor refers one by one to the
rows of the table EMPLOYEE. The host program
decides which employees must be deleted. If this is
the case for a certain employee the following state-
ment is executed)
 EXEC SQL
 DELETE FROM EMPLOYEE
 WHERE CURRENT OF CUR6
 END-EXEC.

ending the use of the cursor
The statement to end the execution of the cursor is:
CLOSE cursorname

(the statement COMMIT that we will discuss further
on has an implicit COMMIT for all cursors)

example
 EXEC SQL
 CLOSE CUR1
 END-EXEC.

working with SELECT INTO
There is one exception from the above. That is the
statement SELECT INTO. This statement aligns its
functioning with the functioning of the host program
in that it works on one row at a time. This is because
this statement may only deliver one row from the
database at a time. If this is not the case an error
situation is the consequence.
The SELECT INTO statement has the following
layout:
SELECT outputspecification
INTO :hostvariable1
 [, hostvaribele2]...
FROM table(-s)
[WHERE search condition]

opening a cursor
The statement for opening/initializing the cursor is:
OPEN cursorname

example
 EXEC SQL
 OPEN CUR1
 END-EXEC.

statement FETCH
The statement for retrieving rows with a cursor is:
FETCH cursorname INTO :variable1
 [,variable2]...

In the FETCH statement there must be exactly as
many variables as that the SELECT statement de-
livers columns in the output. In addition to that the
definition of the variables must be done in a way that
they can contain the offered values. For instance the
variable must be defined as a text column in case
text is read.
Apart from reading a row that is addressed by a cur-
sor, the row can also be updated and even be deleted.

example
 EXEC SQL
 FETCH CUR1
 INTO :REPLACED,
 :SALARY1,
 :SUBSTITUTE,
 :SALARY2
 END-EXEC.

statement UPDATE
For updating the following statement is used:
UPDATE tablename
SET setdescription
WHERE CURRENT OF cursorname

example
(the example uses a cursor CUR3 that reads one by
one the rows of the table EMPLOYEE. The employee
examined gets after the host program decides that
the employee qualifies a pay rise)
 EXEC SQL
 UPDATE EMPLOYEE
 SET SALARY =
 SALARY * (1+
 (:RISEPERCENTATGE / 100))
 WHERE CURRENT OF CUR3
 END-EXEC.

EMBEDDED SQL

3© copyright Ton de Rooij retrieved from www.tonderooij.com

example 1
 EXEC SQL
 SELECT BNAME,
 BTHDATE,
 ADDRESS,
 TOWN
 INTO :BNAME,
 :BTHDATE,
 :ADDRESS,
 :TOWN
 FROM BORROWER
 WHERE BNAME = ‘WOLFF’
 END-EXEC.

example 2
 EXEC SQL
 SELECT SUM(SALARY),
 MAX(SALARY),
 MIN(SALARY)
 INTO :TOTALSALARY,
 :HIGHESTSALARY,
 :LOWESTSALARY
 FROM EMPLOYEE
 WHERE LOCNAME = ‘MADISON’
 END-EXEC.

Transactions

what is a transaction
A transaction is a logical unit of work that is pro-
cessed by a program. The amount of work must be
chosen in a way that after the transaction the data in
the database fulfil all integrity demands. A problem
is that at the same time more than one transaction
(by different programs) can be in execution. A trans-
action may as a consequence of this be reading ‘in
between’ results of other transactions. This can be
partially or totally avoided by isolating the transac-
tions from other transactions. Isolating transactions
from other transactions must be set by the program
that executes them.
We will show how this must be done.

transactions in embedded SQL
In embedded SQL transactions can consist of more
than one SQL statement. In order to process the
transaction correctly it must be clear when a trans-
action starts and when the (same) transaction ends.
Moreover it must be possible to undo a transaction.
Finally transactions must not interfere with each
other.

start and end of a transaction
A transaction starts with a random SQL statement and
ends with the statement COMMIT. This may have as
a consequence that a lot of SQL statements can be
executed in one transaction. The syntax for ending
a transaction is:
COMMIT

example:
 EXEC SQL
 COMMIT
 END-EXEC.

to undo a transaction
A transaction can be undone by the statement:
ROLLBACK

This statement does undo the transaction that is be-
ing executed by the initiating program. Everything that
the transaction has altered in the database is being
undone. A side effect of the statement ROLLBACK
is that all cursors are being closed.

example
 EXEC SQL
 ROLLBACK
 END-EXEC.

programs that execute transactions at the same
time
When we execute more than one transaction at
the same time several problems can occur. These
problems are:
- dirty read
- non-repeatable read
- phantoms

dirty read
Dirty read is the situation in which the transaction has
read rows that have not existed or have not existed
in the shape the transaction has read them.
This could happen as follows. Suppose transaction
T1 updates a row or inserts a new row into the
database. Suppose that transaction T2 reads this
altered or new row. Suppose further that transaction
T1 executes a ROLLBACK that undoes the changes
in the row or deletes the row in which case the row
has never existed. In that case transaction T2 has
been working with a row in which there is a change
that never has existed or with a row that never has
existed.

non-repeatable read
Non-repeatable read is the situation in which the
transaction is confronted with changes in rows the

EMBEDDED SQL

4© copyright Ton de Rooij retrieved from www.tonderooij.com

transaction is working on.
This could happen as follows. Suppose transaction
T1 reads a row. Suppose transaction T2 alters or
deletes this row. Suppose transaction T1 tries to read
the row again. Then transaction T1 becomes aware
that the row is altered or deleted. This can occur, but
transactions do not want to have changes in rows
that they are working on.

phantoms
The phenomenon phantoms is the situation in which
during the execution of a transaction all of a sudden
rows appear that were not present earlier on in the
transaction.
This could happen as follows. Suppose transaction
T1 is working on a set of more than one rows. These
rows have been read before transaction T2 adds
a row that complies with the conditions with which
transaction T1 collected its set of rows. Suppose
transaction T1 wants to update the database based
on the previously collected set of rows. It may very
well be that the update is refused as a consequence
of the newly added row. The reason for the refusal
can be that for instance a CHECK constraint ascer-
tains a violation that it would not have ascertained
based on the previous set. In that case transaction
T1 endures a phantom.

keeping transactions free of problems caused
by simultaneously processed other transactions
For dealing with problems caused by the simultane-
ous use of the database by more than one program,
two settings must be invoked:
- access mode
- isolation level

access mode
The access mode signifies whether a program is
only allowed to read data in the database or that
the program is also allowed to make changes in the
content of the database. This is defined as follows:
SET TRANSACTION
 {READ ONLY | READ WRITE}

The access mode READ ONLY signifies that (with
the exception of temporary tables) a program may
only read data from the database.
The access mode READ WRITE signifies that a
program is allowed to read data from the database
as well as that it is allowed to make changes in the
content of the database. READ WRITE is the default
setting.

example
 EXEC SQL
 SET TRANSACTION READ ONLY
 END-EXEC.

isolation level
The isolation level signifies the extent that transac-
tions are allowed to cause one or more of the men-
tioned problems (dirty read, non-repeatable read,
phantom read). During the writing of a program one
needs to be aware of which problems can occur and
which problems can’t occur.
The program has to test whether problems occur.
Possible isolation levels are:
- READ UNCOMMITTED; in case of READ UNCOM-

MITTED dirty read, repeatable read and phantom
read problems can occur

- READ COMMITTED; in case of READ COMMIT-
TED non repeatable read and phantom read prob-
lems can occur

- REPEATABLE READ; in case of REPEATABLE
READ phantom read problems can occur

- SERIALIZABLE; in case of SERIALIZABLE none
of the mentioned problems can occur (this setting
consumes a lot of performance in order to meet
these demands)

The isolation level can be set as follows:
SET TRANSACTION ISOLATION LEVEL
 { READ UCOMMITTED |
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE}

example
 EXEC SQL
 SET TRANSACTION ISOLATION LEVEL
 REPEATABLE READ
 END-EXEC.

Error messages

During the execution of the SQL statements all kinds
of things can go wrong. The host program must be
able to be aware of this. Based on the kind of error
it must be possible for the host program to steer the
execution into an different direction. Two kinds of
notification mechanisms can be used:
SQLERROR
SQLSTATE

EMBEDDED SQL

5© copyright Ton de Rooij retrieved from www.tonderooij.com

SQLERROR
SQLERROR can be used by adding WHENEVER to
the host program. We will show this by using COBOL
as a host language. The syntax is:
WHENEVER SQLERROR GOTO :hostlabel

(the statement is part of the SQL statements)

example
 EXEC SQL
 WHENEVER SQLERROR
 GO TO :DEAL-WITH-ERROR
 END-EXEC.

SQLSTATE
SQLSTATE can be used for all kinds of things. By the
use of it, it can be established exactly what the error
is that was found. The most important use however
is establishing that no further data can be found. This
gives code ‘02000’. SQLSTATE must be declared as
a variable for the host program and initially be set
at the value ‘00000’. SQLSTATE will get its values
from the system.

example
 PERFORM OPERATION1
 UNTIL SQLSTATE = ‘02000’.

Examples

We will repeat some of the examples that were given
before. For the use of a cursor we will show how the
statements correlate. The examples are:
- example UPDATE statement without the use of a

cursor or host variables
- example DELETE statement with the use of a host

variable
- example UPDATE statement with the use of a cursor
- example of the use of a cursor
- two examples of the use of SELECT INTO

example of an UPDATE statement
 EXEC SQL
 UPDATE LOCATION
 SET CITY = ‘WICKFORD’
 WHERE LOCNAME = ‘FASTBITE’
 END-EXEC.

example of an DELETE statement with the use
of a host variable
 EXEC SQL
 DELETE FROM LOCATION
 WHERE LOCNAME = :LOCNAME
 END-EXEC.

example of the UPDATE statement with the use
of a cursor
(with the use of a cursor CUR3 that points one by one
at the rows of the table EMPLOYEE. The employee
gets a pay rise if the host program decides that the
employee is entitled to it)
 EXEC SQL
 UPDATE EMPLOYEE
 SET SALARY =
 SALARY * (1+
 (:RISEPERCENTATGE / 100))
 WHERE CURRENT OF CUR3
 END-EXEC.

example of the use of a cursor
The example below shows how parts of a COBOL
program deal with awarding a higher salary to re-
placements of employees. The database used is
the database ‘labour division’ of paragraph 6.2 of
the book ‘Databases and SQL’. Parts of the example
were used in the previous explanations.

The part of the COBOL program looks as follows:
*REPLACEMENTS OF DIRECTORS GET THE
*SAME SALARY AS THE ONE THEY
*REPLACE.
 EXEC SQL
 DECLARE CUR1 CURSOR FOR
 SELECT E1.ENR,
 E1.SALARY,
 E2.ENR,
 E2.SALARY
 FROM EMPLOYEE E1,
 EMPLOYEE E2,
 REPLACEMENT R
 WHERE E1.ENR = R.REPLACED
 AND R.SUBSTITUTION = E2.ENR
 AND E1.FNAME = ‘DIRECTOR’
 ORDER BY E1.ENAME
 END-EXEC.
 EXEC SQL
 WHENEVER SQLERROR
 GO TO :DEAL-WITH-ERROR
 END-EXEC.
 EXEC SQL
 OPEN CUR1
 END-EXEC.
 MOVE ‘00000’ TO SQLSTATE.
 EXEC SQL
 FETCH CUR1
 INTO :REPLACED,
 :SALARY1,
 :SUBSTITUTE,
 :SALARY2
 END-EXEC.

EMBEDDED SQL

6© copyright Ton de Rooij retrieved from www.tonderooij.com

 IF SQLSTATE = ‘02000’ GO TO FINISH.
 PERFORM OPERATION1
 UNTIL SQLSTATE = ‘02000’.
 EXEC SQL
 CLOSE CUR1
 END-EXEC.
 EXEC SQL
 COMMIT
 END-EXEC.
 GO TO FINISH.
 OPERATION1.
 MOVE SALARY1 TO SALARY2.
 EXEC SQL
 UPDATE EMPLOYEE
 SET SALARY = :SALARY2
 WHERE ENR = :SUBSTITUTE
 END-EXEC.
 EXEC SQL
 FETCH CUR1
 INTO :REPLACED,
 :SALARY1,
 :VERVANGER,
 :SALARY2
 END-EXEC.
 DEAL-WITH-ERROR.
 DISPLAY
 “AN ERROR OCCURRED”.
 FINISH.
 STOP RUN.

two examples of the use of SELECT INTO
Below are two examples that were previously used
as an example of the use of ‘SELECT INTO’.
Notice how it is assured that in the output only one
row can occur.

example 1
 EXEC SQL
 SELECT BNAME,
 BTHDATE,
 ADDRESS,
 TOWN
 INTO :BNAME,
 :BTHDATE,
 :ADDRESS,
 :TOWN
 FROM BORROWER
 WHERE BNAME = ‘WOLFF’
 END-EXEC.

example 2
 EXEC SQL
 SELECT SUM(SALARY),
 MAX(SALARY),
 MIN(SALARY)
 INTO :TOTALSALARY,
 :HIGHESTSALARY,
 :LOWESTSALARY
 FROM EMPLOYEE
 WHERE LOCNAME = ‘MADISON’
 END-EXEC.

